TRÊS ESTRADAS AND JOCA TAVARES PHOSPHATE DEPOSITS
AGUIA: A Brazilian Fertilizer Company

- Aguia Resources is a fertilizer company focused on producing domestic sources of phosphate and potash to supply the booming Brazilian agriculture sector.

- Flagship Rio Grande do Sul phosphate projects in southern Brazil exhibit high quality & low cost production characteristics (Tres Estradas and Joca Tavares).

- Significant 130% increase of JORC compliant Indicated & Inferred resource at primary target of Tres Estradas announced April 2015 - PEA demonstrates an initial 15+ years of production @ 500,000 tpa SSP.

- PEA/Scoping Study by SRK Consulting on Tres Estradas project demonstrates robust economics.

- Ideal location with proximity to local infrastructure (road, rail, power, port) & a major farming region currently 100% dependent on imports.
Agriculture Sector Depends on Imports

- Brazil is an agricultural powerhouse globally, but totally reliant on imports of fertilizer
- World’s fastest growing fertilizer market and third largest agriculture exporter
- Brazil is 4th largest consumer of fertilizer but only has 4% of global production
- 3rd largest consumer of P₂O₅ (behind China/India), 2nd largest importer of DAP and MAP

Source: ANDA 2013 annual report

World’s Largest Availability of Arable Land

Source: United Nations (UN) World Population Prospects
Aguia Phosphate in Southern Brazil

Southern Brazil

- 3 southern states of Brazil consume ~1.1 Mt of \(P_2O_5 \) annually with no phosphate mines in the region and none scheduled to be built
- Well established farming region imports 100% of its phosphate requirements
Rio Grande Do Sul: Três Estradas

- Aguia’s primary focus is advancing the TRÊS ESTRADAS deposit in Rio Grande do Sul towards production

- Total JORC compliant Indicated & Inferred resource expanded by 130% in 2015 from 30Mt to 70.1Mt (15.2 Mt Indicated & 54.9 Mt Inferred) grading 4.20% P₂O₅¹,²

- Recent drilling program expanded strike length of deposit by 1.3km to a total of 2.5km

- Higher grade oxide zone at surface doubled, now totalling combined Indicated and Inferred 3.9Mt grading 10.25% P₂O₅

- Situated in rolling open countryside, mostly scrub with some light grazing

¹,² See ASX Release of 27th April 2015, SRK Consulting: cut-off grade of 3.0% P₂O₅
Regional Geology: Província Mantiqueira

Domínios tectônicos e principais estruturas da Província Mantiqueira (Delgado et al., 2003 In Bizzi et al., 2003).
Regional Geology: Escudo Sul Rio Grandense

Compartimentação tectônica do Escudo Sul-Rio-Grandense (Hartmann et al., 2007).
Rio Grande Do Sul: Três Estradas Discovery

FD3E-03

80m @ 3.41% P2O5 (from 16m)

Incl. 17m @ 4.94% P2O5 (from 56m)
Rio Grande Do Sul: Três Estradas Carbonatite

15% apatite – 6% P2O5

Assays up to 32% in weathered rock

Rio Grande Do Sul: Três Estradas

- Rock assays up to 32% P2O5
- Soil assays up to 6.41% P2O5
Três Estradas: weathered carbonatite

Trench with weathered meta-carbonatite
Assays up to 28.80% P2O5
Três Estradas: first drilling campaign

Diamond Drilling:
- 40 HOLES – 5,333.90m

Reverse Circulation:
- 105 HOLES – 2,151.00m
Três Estradas oxidized meta carbonatite

Best intercept:

- 27m @ 17.75% P2O5 (from 0.00m), Incl. 12.30m @ 24.60% P2O5 (from 6.30m) (TED-11-008);
- Average P2O5 values of 12.0% P2O5 and up to 36.90% P2O5 (TED-11-008).
- 98% of P2O5 in apatite

Sample with 36.90% P2O5
(Oxidized Carbonatite)

Sample up to 85% apatite, ± 1% monazite and ± Al-phosphate

Sample with values up to 32% P2O5
(Silicified weathered Meta -carbonatite)
Três Estradas fresh carbonatite

Intercepts:
92.60m @ 4.83% P2O5 (from 5.00m) (TED-11-006)
Average P2O5 values of 4.05% P2O5 and up to 12.90% P2O5 (TED-11-016).
Average: 12% apatite
99% of P2O5 in apatite
Três Estradas 1200 drilling section

SECTION 1200
(Tres Estradas Target)

Shallow Oxide Zone from surface to 30 metres Depth

- 18.40m @ 3.70% P2O5 (from 0.00m), Incl. 9m @ 5.44% P2O5 (from 3.00m)
- 61.50m @ 3.66% P2O5 (from 51.30m)
- 30.0m @ 9.50% P2O5 (from surface), Incl. 5.0m @ 12.82% P2O5 (from 2.0m), Incl. 7.0m @ 15.81% P2O5 (from 19.0m)
- 27m @ 17.75% P2O5 (from 0.00m), Incl. 12.30m @ 24.60% P2O5 (from 6.30m)
- 50.75m @ 6.41% P2O5 (from 0.00m), Incl. 10.80m @ 11.15% P2O5 (from 0.60m), Incl. 11.00m @ 7.04% P2O5 (from 20.00m)
- 1.65m @ 3.58% P2O5 (from 3.50m), And 9.0m @ 3.05% P2O5 (from 10.0m), And 42.75m @ 4.27% P2O5 (from 29.20m), Incl. 8.75m @ 6.06% P2O5 (from 40.60m)

PIT DEPTH BY SRK:
263m

Legend:
- Soil
- Saplroilte
- Quartz vein
- Weathered Meta-syenite
- Weathered Meta-carbonatite
- Weathered Amphibolite
- Weathered gneiss
- Meta-syenite
- Meta-carbonatite
- Amphibolite
- Gneiss
- Mineralised intercept
- High grade zones
Três Estradas 1300 drillig section
Rio Grande Do Sul: Três Estradas

- Mining method from surface is low-cost and simple: open cut with low strip ratio

Phosphate mineralization at surface
Rio Grande Do Sul: Três Estradas Exploration Works

<table>
<thead>
<tr>
<th>Exploration Work</th>
<th>To date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDH (78 holes)</td>
<td>10,801.45 m</td>
</tr>
<tr>
<td>RC (154 holes)</td>
<td>3,304.00 m</td>
</tr>
<tr>
<td>Auger drilling (487 holes)</td>
<td>2,481.65 m</td>
</tr>
<tr>
<td>Rock Samples</td>
<td>121</td>
</tr>
<tr>
<td>Soil Samples</td>
<td>494</td>
</tr>
<tr>
<td>Channel Samples</td>
<td>6</td>
</tr>
<tr>
<td>Petrography</td>
<td>29</td>
</tr>
<tr>
<td>SG density</td>
<td>2517</td>
</tr>
<tr>
<td>Mineralogy test work</td>
<td>4</td>
</tr>
<tr>
<td>Crushing and flotation test work</td>
<td>11</td>
</tr>
<tr>
<td>Grid for geophysics</td>
<td>135.72 km</td>
</tr>
<tr>
<td>Magnetometry Survey</td>
<td>129 km</td>
</tr>
</tbody>
</table>

Legend

- **DRIAMOND DRILL HOLES**
- **RC HOLES**

Geological Units

- Meta-carbonatite
- Amphibolite
Diamond Drilling:
- 78 HOLES – 10,801.45 m
Reverse Circulation:
- 154 HOLES – 3,304.00 m

Geological Unit
- Quartz vein
- Meta-syenite
- Meta-carbonatite
- Amphibolite
- Gneissic basement

AGR Drilling
- Diamond drilling @100m spacing
- Reverse circulation drilling @50m spacing
- Auger drilling @100m spacing

Faults and other lineaments
Strong anomaly ground MAG
Três Estradas Mineral Resource

- Total JORC compliant Indicated + Inferred resource expanded by 130%, from 30 Mt to 70.1 Mt comprising 15.2Mt Indicated & 54.9 Inferred grading 4.20% P2O5
- Higher grade oxide zone from surface doubled, now totalling 4 Mt combined Indicated & Inferred grading 10.1% P2O5
Três Estradas JORC Resource

<table>
<thead>
<tr>
<th>Lithotype</th>
<th>Tonnage</th>
<th>P₂O₅</th>
<th>CaO</th>
<th>MgO</th>
<th>Fe₂O₃</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>P₂O₅AP †</th>
<th>RCP †</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tx 1000</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Indicated Mineral Resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saprolite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMM (amphibolite)</td>
<td>415</td>
<td>6.30</td>
<td>11.44</td>
<td>6.64</td>
<td>17.12</td>
<td>36.87</td>
<td>7.36</td>
<td>6.27</td>
<td>1.97</td>
</tr>
<tr>
<td>SCBT (carbonatite)</td>
<td>2,017</td>
<td>10.74</td>
<td>18.06</td>
<td>4.79</td>
<td>18.99</td>
<td>28.88</td>
<td>5.11</td>
<td>10.69</td>
<td>1.94</td>
</tr>
<tr>
<td>Weathered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WCBT (carbonatite)</td>
<td>1,713</td>
<td>4.99</td>
<td>34.26</td>
<td>6.34</td>
<td>9.54</td>
<td>13.85</td>
<td>2.21</td>
<td>4.99</td>
<td>7.58</td>
</tr>
<tr>
<td>Fresh Rock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCBT (carbonatite)</td>
<td>11,055</td>
<td>3.94</td>
<td>33.94</td>
<td>7.77</td>
<td>8.35</td>
<td>12.26</td>
<td>2.09</td>
<td>3.94</td>
<td>8.84</td>
</tr>
<tr>
<td>Total Indicated Resources</td>
<td>15,200</td>
<td>5.02</td>
<td>31.25</td>
<td>7.18</td>
<td>10.14</td>
<td>15.32</td>
<td>2.65</td>
<td>5.02</td>
<td>7.59</td>
</tr>
<tr>
<td>Inferred Mineral Resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saprolite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMM (amphibolite)</td>
<td>302</td>
<td>5.35</td>
<td>11.14</td>
<td>6.88</td>
<td>16.91</td>
<td>38.34</td>
<td>8.09</td>
<td>5.33</td>
<td>2.32</td>
</tr>
<tr>
<td>SCBT (carbonatite)</td>
<td>1,205</td>
<td>12.03</td>
<td>18.10</td>
<td>4.04</td>
<td>20.69</td>
<td>27.92</td>
<td>4.96</td>
<td>11.96</td>
<td>1.72</td>
</tr>
<tr>
<td>Weathered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WCBT (carbonatite)</td>
<td>866</td>
<td>4.40</td>
<td>35.79</td>
<td>6.41</td>
<td>8.50</td>
<td>12.11</td>
<td>2.01</td>
<td>4.40</td>
<td>8.82</td>
</tr>
<tr>
<td>Fresh Rock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCBT (carbonatite)</td>
<td>52,489</td>
<td>3.78</td>
<td>35.35</td>
<td>7.69</td>
<td>7.81</td>
<td>10.55</td>
<td>1.82</td>
<td>3.78</td>
<td>9.49</td>
</tr>
<tr>
<td>Total Inferred Resources</td>
<td>54,862</td>
<td>3.98</td>
<td>34.84</td>
<td>7.59</td>
<td>8.15</td>
<td>11.11</td>
<td>1.92</td>
<td>3.97</td>
<td>9.27</td>
</tr>
</tbody>
</table>

* Mineral resources are not mineral reserves and have not demonstrated economic viability. All figures are rounded to reflect the relative accuracy of the estimates. The mineral resources are reported within a conceptual pit shell at a cut-off grade of 3.00 percent of P₂O₅ for saprolite, weathered and fresh rock mineralization. Optimization parameters include selling price of US$330.00 per tonne of SSP, a metallurgical recovery of 85 and 80 percent of P₂O₅ in fresh and oxide rock, 100 percent for mining recovery, 0 percent dilution, and overall pit slopes of 38 and 60 degrees for saprolite and fresh rock, respectively.

† CaO/ P₂O₅ ratio
‡ P₂O₅ contained in apatite

1 SRK Consulting: cut-off grade of 3.0% P₂O₅
Três Estradas: Beneficiation Tests

- Recent beneficiation test work\(^1\) at Três Estradas has resulted in expected phosphate recovery from oxidized material of 80%
- Expected phosphate recovery from fresh carbonatite of 65%
- Phosrock grading up to 39% P_2O_5 was produced from fresh carbonatite with no impurity issues
- Tests demonstrate potential for production of commercial quality calcite concentrate byproduct (48.2% CaO and 3.25% MgO)

May, 2015 (SGS, Canada)

<table>
<thead>
<tr>
<th>Sample Number & Description</th>
<th>Head Grade</th>
<th>Overall Metallurgical Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>(150 kg samples)</td>
<td>P_2O_5</td>
<td>Recovery P_2O_5</td>
</tr>
<tr>
<td>EB-08, Oxidised Carbonatite</td>
<td>11.3%</td>
<td>80%</td>
</tr>
<tr>
<td>EB-09, Fresh Carbonatite</td>
<td>4.38%</td>
<td>65%</td>
</tr>
</tbody>
</table>

\(^1\) See ASX Release of 11th May 2015
Key Mine and Processing Stats

- Open pit, truck and excavator operation. Phosphate mineralization will involve drilling and blasting.
- 15.5 years life of mine. Strip ration 2.45:1.
- The project will move 138 Mt of material, of which 40 Mt of ROM grading 4.3% P₂O₅ to be hauled to an on-site flotation plant with a feed capacity of 7,500 tonnes per day.
- Oxide recovery of 75% to a 30% P₂O₅ concentrate. Fresh carbonatite recovery of 65% to a 28% P₂O₅ concentrate.
- Phosrock concentrate to be trucked to Rio Grande Port to be upgraded at a granulated SSP plant.
- Phosrock to SSP conversion ratio of 1:55
- Granulated SSP plant capacity is 500k tpy.

¹Preliminary Economic Assessment undertaken by SRK Consulting (Canada) Inc., see ASX release August 19, 2015
PEA Confirms Viability of Três Estradas

- Preliminary Economic Assessment\(^1\) of the Tres Estradas Project confirms the technical and economic viability of the Tres Estradas project as a low cost producer of SSP in Southern Brazil.
- Attractive project returns with IRR of 25%, estimated NPV\(_5\) of $273 million and payback of 3.2 years based on long term SSP price of US$280/tonne\(^1\).
- Opportunity to produce up to 630,000 tpy of calcitic aglime as by-product.
- Existing infrastructure and proximity to market decrease construction costs and provide competitive selling advantage over imports.
- Adjacent targets at Joca Tavares have potential to expand the oxide resource and substantially enhance the economics of the industrial project.

Key PEA Results

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Production</td>
<td>500,000 SSP</td>
</tr>
<tr>
<td>Total CAPEX Requirement</td>
<td>US$184 million</td>
</tr>
<tr>
<td>OPEX</td>
<td>US$160.7/tonne SSP</td>
</tr>
<tr>
<td>Initial Mine Life</td>
<td>15.5 years</td>
</tr>
<tr>
<td>Strip Ratio</td>
<td>2.45:1 (waste to ore) average life of mine</td>
</tr>
</tbody>
</table>

Next Steps:

1. Initiate the environmental baseline study and a Bankable Feasibility Study of the Três Estradas Project.
2. Drilling targets in the Rio Grande region, namely Joca Tavares and Cerro Preto.

\(^1\)Preliminary Economic Assessment undertaken by SRK Consulting (Canada) Inc., see ASX release August 19, 2015.
Segundo Toniolo et al. (2013), o JT intrudiu na zona de contato entre rochas sedimentares do Grupo Cerro do Bugio do Ediacariano e rochas metassedimentares criogenianas da Formação Arroio Marmeleiro.
Aspecto geral dos afloramentos do carbonatito Joca Tavares
Joca Tavares carbonatite

JTP-04: Hematite-rich carbonatitic breccia. Carbonate (60%), limonite (20%), hematite (2%), baryte (2%), apatite (2%), other opaques (14%).

JTP-02: Carbonatite. Carbonate (70%), quartz (14%), hematite (8%), limonite (5%), ilmenite (2%), apatite (1%).

JTP-05: Hematite-rich carbonatitic breccia. Carbonate (83%), hematite (14%), apatite (1%), ilmenite (1%), chalcedony + quartz (1%).
Joca Tavares soil geochemistry
Joca Tavares ground mag and soil geochemistry
Rio Grande Do Sul: Joca Tavares

- New phosphate discovery Joca Tavares being assessed 40 km east of Três Estradas - high grade optionality for Três Estradas start-up
- Initial scout auger drilling returned excellent results in carbonatite from surface with grades up to +13% P_2O_5
 - 14.7 m @10.8% P_2O_5 from surface
 - 9.0 m @11.5% P_2O_5 from surface
 - 3.8 m @13.7% P_2O_5 from surface
 - 3.5 m @12.1% P_2O_5 from surface
 - 4.6 m @ 8.2% P_2O_5 from surface
- Carbonatite dimension delineated by drilling 350m x 350m and growing
- All holes in carbonatite have ended in mineralization

Sample from JOCA TAVARES
Joca Tavares auger program assay results

<table>
<thead>
<tr>
<th>Hole_ID</th>
<th>UTM_E</th>
<th>UTM_N</th>
<th>Elevation (m)</th>
<th>Mineralized intervals - SGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>JTT-13-002</td>
<td>234202</td>
<td>6566874</td>
<td>261.00</td>
<td>6.40m @ 8.21% P2O5 (from surface), Incl. 2.40m @ 12.62% P2O5 (from 4.0m)</td>
</tr>
<tr>
<td>JTT-13-003</td>
<td>234195</td>
<td>6566824</td>
<td>275.00</td>
<td>14.70m @ 10.82% P2O5 (from surface), Incl. 10.70m @ 12.73% P2O5 (from 4.0m), Incl. 3.70m @ 14.20% P2O5 (from 11.00m)</td>
</tr>
<tr>
<td>JTT-13-004</td>
<td>234200</td>
<td>6566775</td>
<td>262.00</td>
<td>5.50m @ 7.70% P2O5 (from surface), Incl. 3.50m @ 9.92% P2O5 (from 2.0m)</td>
</tr>
<tr>
<td>JTT-13-005</td>
<td>234300</td>
<td>6566775</td>
<td>259.00</td>
<td>3.50m @ 12.08% P2O5 (from surface)</td>
</tr>
<tr>
<td>JTT-13-006</td>
<td>234294</td>
<td>6566829</td>
<td>244.00</td>
<td>2.0m @ 12.75% P2O5 (from surface)</td>
</tr>
<tr>
<td>JTT-13-007</td>
<td>234300</td>
<td>6566728</td>
<td>262.00</td>
<td>2.0m @ 8.76% P2O5 (from surface)</td>
</tr>
<tr>
<td>JTT-13-009</td>
<td>234300</td>
<td>6566877</td>
<td>245.00</td>
<td>2.0m @ 4.28% P2O5 (from surface)</td>
</tr>
<tr>
<td>JTT-13-010</td>
<td>234400</td>
<td>6566828</td>
<td>237.00</td>
<td>2.0m @ 6.12% P2O5 (from surface)</td>
</tr>
<tr>
<td>JTT-13-011</td>
<td>234400</td>
<td>6566775</td>
<td>240.00</td>
<td>1.0m @ 3.42% P2O5 (from surface)</td>
</tr>
<tr>
<td>JTT-13-012</td>
<td>234400</td>
<td>6566725</td>
<td>244.00</td>
<td>3.40m @ 4.83% P2O5 (from surface)</td>
</tr>
<tr>
<td>JTT-13-016</td>
<td>234100</td>
<td>6566845</td>
<td>262.00</td>
<td>9.0m @ 11.53% P2O5 (from surface)</td>
</tr>
<tr>
<td>JTT-13-017</td>
<td>234103</td>
<td>6566800</td>
<td>265.00</td>
<td>2.80m @ 7.48% P2O5 (from surface)</td>
</tr>
<tr>
<td>JTT-13-018</td>
<td>234100</td>
<td>6566750</td>
<td>259.00</td>
<td>4.60m @ 8.15% P2O5 (from surface)</td>
</tr>
<tr>
<td>JTT-13-022</td>
<td>234196</td>
<td>6566728</td>
<td>250.00</td>
<td>1.0m @ 5.16% P2O5 (from 5.0m)</td>
</tr>
<tr>
<td>JTT-13-026</td>
<td>234197</td>
<td>6566902</td>
<td>260.00</td>
<td>3.80m @ 13.71% P2O5 (from surface)</td>
</tr>
</tbody>
</table>
Joca Tavares exploration drilling

<table>
<thead>
<tr>
<th>Exploration Work</th>
<th>To date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDH (40 holes)</td>
<td>2,280.80 m</td>
</tr>
<tr>
<td>Auger drilling (89 holes)</td>
<td>347.65 m</td>
</tr>
<tr>
<td>Rock Samples</td>
<td>252</td>
</tr>
<tr>
<td>Soil Samples</td>
<td>457</td>
</tr>
<tr>
<td>Petrography</td>
<td>33</td>
</tr>
<tr>
<td>SG density</td>
<td>620</td>
</tr>
<tr>
<td>Grid for geophysics</td>
<td>53.2 km</td>
</tr>
<tr>
<td>Magnetometry Survey</td>
<td>50.4 km</td>
</tr>
</tbody>
</table>
Joca Tavares resource 3D model
Joca Tavares geological cross section
2/3 of the carbonatites are intrusive in Proterozoic rocks. 64% are Cambrian.
Carbonatite occurrences along time

Distribution of carbonatites in geological time
Carbonatite occurrences of the world

Carbonatitos Tipo “Central”

- Tapira - MG, Brasil (Brod et al., 2004)
- Phalaborwa - África do Sul (Yuhara et al., 2005)
- Lueshe - Congo (Nasraoui and Bilal, 2000)
- Catalão I - GO, Brasil (Brod et al., 2004)
- Araxá - MG, Brasil (Brod et al., 2004)
- Serra Negra - MG, Brasil (Brod et al., 2004)
- Jacupiranga - SP, Brasil (Constanzo et al., 2006)
- Salitre I - MG, Brasil (Barbosa, 2009)

Carbonatitos Tipo “Linear”

- Três Estradas - RS, Brasil (Silva et al., 1987 e 1988)
- Angico dos Dias - BA, Brasil (Silva et al., 1987)
- Sillinjärvi - Finlândia (Puustinen, 1969; Notholt, 1979)
- Chernigov - Ucrânia (Rusakov, 1986 In: Rundqvist and Gillen, 1997)

- **K/Ar**:
 - **71,2 ± 5,1**
 - **85,0 ± 6,9**
 - **77,4 ± 1; 89,4 ± 10,1; 97,6 ± 6,1 (c); 88 ± 4; 96 ± 5 (d)**
 - **Varia entre 130 a 155 Ma com média de 135 (c)**

- **K/Ar**: 130,6 ± 3;
- **U/Pb**: 1.167±95 (titanita metamórfica); Sm/Nd 1.1 Ga (zircão)
- **K/Ar**: 130,6 ± 3;
- **U/Pb**: 2.011±6 (Silva et al., 1987 e 1988)
- **K/Ar**: 130,6 ± 3;
- **U/Pb**: 2.011±6 (Silva et al., 1987 e 1988)
- **K/Ar**: 1785 – 2.030 (Puustinen, 1971)
- **K/Ar**: 1.930 – 2.170; U/Pb: 2.090 – 2.190 (Glevasskiy & Krivdik, 1981)

U/Pb: 1.167±95 (titanita metamórfica); Sm/Nd 1.1 Ga (zircão)

U/Pb: 2.011±6 (Silva et al., 1987 e 1988)

U/Pb: 1.167±95 (titanita metamórfica); Sm/Nd 1.1 Ga (zircão)
Carbonatite occurrences of the world – South America and West Africa (2008).
Carbonatite occurrences - Rio Grande do Sul
Enquiries:
Justin Reid, Executive Chairman & Managing Director
jreid@aguiaresources.com.au

Catherine Stretch, Chief Commercial Officer
cstretch@aguiaresources.com.au

Registered Office
Suite 4, Level 9, 341 George Street, Sydney NSW 2000, Australia
+612 9299 9690

Head Office
Rua Antonio de Albuquerque, 156
15º andar - Funcionarios
Belo Horizonte – MG, Brazil
Tel: +55 31 350 55200

ASX Code: AGR